Vector fields on Singular Varieties Vector fields on Singular Varieties
Lecture Notes in Mathematics

Vector fields on Singular Varieties

    • 35,99 €
    • 35,99 €

Publisher Description

Vector fields on manifolds play a major role in mathematics and other sciences. In particular, the Poincaré-Hopf index theorem gives rise to the theory of Chern classes, key manifold-invariants in geometry and topology.
It is natural to ask what is the ‘good’ notion of the index of a vector field, and of Chern classes, if the underlying space becomes singular. The question has been explored by several authors resulting in various answers, starting with the pioneering work of M.-H. Schwartz and R. MacPherson.
We present these notions in the framework of the obstruction theory and the Chern-Weil theory. The interplay between these two methods is one of the main features of the monograph.

GENRE
Science & Nature
RELEASED
2009
28 November
LANGUAGE
EN
English
LENGTH
252
Pages
PUBLISHER
Springer Berlin Heidelberg
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
4.6
MB
Numerical Methods for Metric Graphs Numerical Methods for Metric Graphs
2025
Relative Rearrangement Relative Rearrangement
2025
Global Logarithmic Deformation Theory Global Logarithmic Deformation Theory
2025
Discrete Weak KAM Theory Discrete Weak KAM Theory
2025
Operator Space Tensor Norms Operator Space Tensor Norms
2025
Stochastic Geometry: Percolation, Tesselations, Gaussian Fields and Point Processes Stochastic Geometry: Percolation, Tesselations, Gaussian Fields and Point Processes
2025