Achieving Science with CubeSats Achieving Science with CubeSats

Achieving Science with CubeSats

Thinking Inside the Box

    • $64.99
    • $64.99

Publisher Description

Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called “U’s.” Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally.

In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future.

Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform’s promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use “sacrificial,” or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.

GENRE
Science & Nature
RELEASED
2016
6 October
LANGUAGE
EN
English
LENGTH
130
Pages
PUBLISHER
National Academies Press
SELLER
National Academy of Sciences
SIZE
14.5
MB
Powering Science Powering Science
2017
Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions Assessment of Mission Size Trade-offs for NASA's Earth and Space Science Missions
2000
NASA Space Technology Roadmaps and Priorities NASA Space Technology Roadmaps and Priorities
2012
NASA's 2014 Science Plan NASA's 2014 Science Plan
2014
An Interim Report on NASA's Technology Roadmap An Interim Report on NASA's Technology Roadmap
2011
Report Series Report Series
2017
Biodiversity at Risk Biodiversity at Risk
2022
The Challenges and Opportunities of Advance Care Planning The Challenges and Opportunities of Advance Care Planning
2021
The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education
2018
Nutrigenomics and the Future of Nutrition Nutrigenomics and the Future of Nutrition
2018
Violence and Mental Health Violence and Mental Health
2018
The Health Effects of Cannabis and Cannabinoids The Health Effects of Cannabis and Cannabinoids
2017