Immunochemistry of Lysosomal Storage Disorders (Clinical Report) Immunochemistry of Lysosomal Storage Disorders (Clinical Report)

Immunochemistry of Lysosomal Storage Disorders (Clinical Report‪)‬

Clinical Chemistry 2006, Sept, 52, 9

    • $5.99
    • $5.99

Publisher Description

Lysosomal storage disorders (LSDs) (1) are a group of more than 50 inherited diseases, which have a combined incidence of ~1:7700 live births (1). Each disorder is caused by the dysfunction of either a lysosomal enzyme or a lysosome-associated protein involved in enzyme activation, enzyme targeting, or lysosomal biogenesis. These defects lead to the accumulation of substrate that would normally be degraded in the endosome-lysosome system. In severely affected patients, this ultimately leads to the chronic and progressive deterioration of affected cells, tissues, and organs. Most LSDs display a broad spectrum of clinical manifestations, which have been previously identified as clinical subtypes [such as the Hurler/Scheie definition of mucopolysaccharidosis (MPS) I and the infantile-, juvenile-, and adult-onset forms of Pompe disease]. Some of the clinical symptoms that are observed in multiple LSDs (e.g., most of the MPSs) include bone abnormalities, organomegaly, coarse hair/fades, and central nervous system (CNS) dysfunction (2). At the severe end of the clinical spectrum, the onset of pathology tends to be rapid and progressive, whereas at the attenuated end, disease onset is later and progress less rapid. With the advent of molecular biology/genetics and the characterization of many of the genes associated with LSDs, it has now been recognized that the range of clinical severity may in part be ascribed to different disease-causing variations within the same gene. However, genotypephenotype correlations are not always informative (3). For example, in Gaucher disease, there are sometimes substantial differences in clinical manifestation between patients with the same genotype, and in some instances, one patient has been severely affected whereas another was virtually disease free (4). Other factors, including genetic background and environment, can also play a role in disease progression. The broad spectrum of clinical presentation in LSDs can make clinical diagnosis extremely difficult, taking months to years in some instances. Therapies, such as bone marrow or hematopoietic stem-cell transplantation and enzyme replacement therapy (ERT), are currently available for several LSDs, including MPS I (5, 6), MPS VI (7), Gaucher disease (8), and Fabry disease (9,10). Furthermore, clinical trials of ERT for MPS II (11) and Pompe disease (12) are in progress. Other strategies being developed include substrate deprivation (13-17), gene replacement (18-22), premature stop codon read-through (23), and chemical chaperone (24 26) therapies. The success of these treatment strategies in some cases (e.g., CNS pathology) may rely on the commencement of therapy before the pathology becomes irreversible. Recent progress toward newborn screening for LSDs holds promise for early detection (27-29). However, when patients are identified presymptomatically, decisions on the best therapeutic approach to apply will be difficult in the absence of a clinical prognosis. Accurate and sensitive methods are therefore required for the prediction of clinical phenotype, particularly the predisposition to CNS pathology. This review discusses immunochemical approaches that have been used to address the need for early detection, phenotype prediction, and characterization of the disease process in patients with LSDs.

GENRE
Science & Nature
RELEASED
2006
1 September
LANGUAGE
EN
English
LENGTH
30
Pages
PUBLISHER
American Association for Clinical Chemistry, Inc.
SELLER
The Gale Group, Inc., a Delaware corporation and an affiliate of Cengage Learning, Inc.
SIZE
205.2
KB

More Books Like This

Principles and Applications of Molecular Diagnostics Principles and Applications of Molecular Diagnostics
2018
Translational Cardiometabolic Genomic Medicine Translational Cardiometabolic Genomic Medicine
2015
Chemical Diagnostics Chemical Diagnostics
2013
Molecular Pathology Molecular Pathology
2009
Contemporary Practice in Clinical Chemistry (Enhanced Edition) Contemporary Practice in Clinical Chemistry (Enhanced Edition)
2020
Kidney Biomarkers (Enhanced Edition) Kidney Biomarkers (Enhanced Edition)
2020

More Books by Clinical Chemistry

Lowering Cutoffs for Initial and Confirmation Testing for Cocaine and Marijuana: Large-Scale Study of Effects on the Rates of Drug-Positive Results (Drug Monitoring and Toxicology) Lowering Cutoffs for Initial and Confirmation Testing for Cocaine and Marijuana: Large-Scale Study of Effects on the Rates of Drug-Positive Results (Drug Monitoring and Toxicology)
1997
Myocardial Infarction Redefined: Role of Cardiac Troponin Testing (Editorial) Myocardial Infarction Redefined: Role of Cardiac Troponin Testing (Editorial)
2001
Distribution of Fasting Plasma Insulin, Free Fatty Acids, And Glucose Concentrations and of Homeostasis Model Assessment of Insulin Resistance in a Representative Sample of Quebec Children and Adolescents (Pediatric Clinical Chemistry) Distribution of Fasting Plasma Insulin, Free Fatty Acids, And Glucose Concentrations and of Homeostasis Model Assessment of Insulin Resistance in a Representative Sample of Quebec Children and Adolescents (Pediatric Clinical Chemistry)
2003
C677T and AI298C Polymorphisms of the Methylenetetrahydrofolate Reductase Gene: Incidence and Effect of Combined Genotypes on Plasma Fasting and Post-Methionine Load Homocysteine in Vascular Disease (Molecular Diagnostics and Genetics) C677T and AI298C Polymorphisms of the Methylenetetrahydrofolate Reductase Gene: Incidence and Effect of Combined Genotypes on Plasma Fasting and Post-Methionine Load Homocysteine in Vascular Disease (Molecular Diagnostics and Genetics)
2001
Acetylcholinesterase Activity and Biogenic Amines in Phenylketonuria (Technical Briefs) Acetylcholinesterase Activity and Biogenic Amines in Phenylketonuria (Technical Briefs)
2002
Homocysteine, 5, 10-Methylenetetrahydrofolate Reductase 677CT Polymorphism, Nutrient Intake, And Incident Cardiovascular Disease in 24 968 Initially Healthy Women (Molecular Diagnostics and Genetics) (Clinical Report) Homocysteine, 5, 10-Methylenetetrahydrofolate Reductase 677CT Polymorphism, Nutrient Intake, And Incident Cardiovascular Disease in 24 968 Initially Healthy Women (Molecular Diagnostics and Genetics) (Clinical Report)
2007