The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments (Special Report) (Polymerase Chain Reaction) (Report) The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments (Special Report) (Polymerase Chain Reaction) (Report)

The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments (Special Report) (Polymerase Chain Reaction) (Report‪)‬

Clinical Chemistry 2009, April, 55, 4

    • $5.99
    • $5.99

Publisher Description

The fluorescence-based quantitative real-time PCR (qPCR) (15) (1-3), with its capacity to detect and measure minute amounts of nucleic acids in a wide range of samples from numerous sources, is the enabling technology par excellence of molecular diagnostics, life sciences, agriculture, and medicine (4, 5). Its conceptual and practical simplicity, together with its combination of speed, sensitivity, and specificity in a homogeneous assay, have made it the touchstone for nucleic acid quantification. In addition to its use as a research tool, many diagnostic applications have been developed, including microbial quantification, gene dosage determination, identification of transgenes in genetically modified foods, risk assessment of cancer recurrence, and applications for forensic use (6-11). This popularity is reflected in the prodigious number of publications reporting qPCR data, which invariably use diverse reagents, protocols, analysis methods, and reporting formats. This remarkable lack of consensus on how best to perform qPCR experiments has the adverse consequence of perpetuating a string of serious shortcomings that encumber its status as an independent yardstick (12). Technical deficiencies that affect assay performance include the following: (a) inadequate sample storage, preparation, and nucleic acid quality, yielding highly variable results; (b) poor choice of reverse-transcription primers and primers and probes for the PCR, leading to inefficient and less-than-robust assay performance; and (c) inappropriate data and statistical analyses, generating results that can be highly misleading. Consequently, there is the real danger of the scientific literature being corrupted with a multitude of publications reporting inadequate and conflicting results (13). The publication (14) and retraction (15) of a Science "Breakthrough of the Year 2005" report provides a disquieting warning. The problem is exacerbated by the lack of information that characterizes most reports of studies that have used this technology, with many publications not providing sufficient experimental detail to permit the reader to critically evaluate the quality of the results presented or to repeat the experiments. Specifically, information about sample acquisition and handling, RNA quality and integrity, reverse-transcription details, PCR efficiencies, and analysis parameters are frequently omitted, whereas sample normalization is habitually carried out against single reference genes without adequate justification.

GENRE
Science & Nature
RELEASED
2009
1 April
LANGUAGE
EN
English
LENGTH
38
Pages
PUBLISHER
American Association for Clinical Chemistry, Inc.
SELLER
The Gale Group, Inc., a Delaware corporation and an affiliate of Cengage Learning, Inc.
SIZE
255.1
KB

More Books Like This

MIQE & qPCR MIQE & qPCR
2016
MIQE qPCR & dPCR MIQE qPCR & dPCR
2022
Fundamentals of Advanced Omics Technologies: From Genes to Metabolites Fundamentals of Advanced Omics Technologies: From Genes to Metabolites
2014
Definitive qPCR Definitive qPCR
2012
Applications of Advanced Omics Technologies: From Genes to Metabolites Applications of Advanced Omics Technologies: From Genes to Metabolites
2014
Expert Guides Definitive qPCR Nucleic Acid QC Expert Guides Definitive qPCR Nucleic Acid QC
2012

More Books by Clinical Chemistry

Lowering Cutoffs for Initial and Confirmation Testing for Cocaine and Marijuana: Large-Scale Study of Effects on the Rates of Drug-Positive Results (Drug Monitoring and Toxicology) Lowering Cutoffs for Initial and Confirmation Testing for Cocaine and Marijuana: Large-Scale Study of Effects on the Rates of Drug-Positive Results (Drug Monitoring and Toxicology)
1997
Myocardial Infarction Redefined: Role of Cardiac Troponin Testing (Editorial) Myocardial Infarction Redefined: Role of Cardiac Troponin Testing (Editorial)
2001
Distribution of Fasting Plasma Insulin, Free Fatty Acids, And Glucose Concentrations and of Homeostasis Model Assessment of Insulin Resistance in a Representative Sample of Quebec Children and Adolescents (Pediatric Clinical Chemistry) Distribution of Fasting Plasma Insulin, Free Fatty Acids, And Glucose Concentrations and of Homeostasis Model Assessment of Insulin Resistance in a Representative Sample of Quebec Children and Adolescents (Pediatric Clinical Chemistry)
2003
C677T and AI298C Polymorphisms of the Methylenetetrahydrofolate Reductase Gene: Incidence and Effect of Combined Genotypes on Plasma Fasting and Post-Methionine Load Homocysteine in Vascular Disease (Molecular Diagnostics and Genetics) C677T and AI298C Polymorphisms of the Methylenetetrahydrofolate Reductase Gene: Incidence and Effect of Combined Genotypes on Plasma Fasting and Post-Methionine Load Homocysteine in Vascular Disease (Molecular Diagnostics and Genetics)
2001
Acetylcholinesterase Activity and Biogenic Amines in Phenylketonuria (Technical Briefs) Acetylcholinesterase Activity and Biogenic Amines in Phenylketonuria (Technical Briefs)
2002
Homocysteine, 5, 10-Methylenetetrahydrofolate Reductase 677CT Polymorphism, Nutrient Intake, And Incident Cardiovascular Disease in 24 968 Initially Healthy Women (Molecular Diagnostics and Genetics) (Clinical Report) Homocysteine, 5, 10-Methylenetetrahydrofolate Reductase 677CT Polymorphism, Nutrient Intake, And Incident Cardiovascular Disease in 24 968 Initially Healthy Women (Molecular Diagnostics and Genetics) (Clinical Report)
2007