Achieving Science with CubeSats Achieving Science with CubeSats

Achieving Science with CubeSats

Thinking Inside the Box

    • 104,99 лв.
    • 104,99 лв.

Publisher Description

Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called “U’s.” Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally.

In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future.

Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform’s promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use “sacrificial,” or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.

GENRE
Science & Nature
RELEASED
2016
6 October
LANGUAGE
EN
English
LENGTH
130
Pages
PUBLISHER
National Academies Press
SIZE
14.5
MB

More Books by National Academies of Sciences, Engineering, and Medicine

An Assessment of the National Institute of Standards and Technology Center for Neutron Research An Assessment of the National Institute of Standards and Technology Center for Neutron Research
2024
Low Birth Weight Babies and Disability Low Birth Weight Babies and Disability
2024
Facial Recognition Technology Facial Recognition Technology
2024
Aging in Place with Dementia Aging in Place with Dementia
2024
Supporting and Sustaining the Current and Future Workforce to Care for People with Serious Illness Supporting and Sustaining the Current and Future Workforce to Care for People with Serious Illness
2024
Developing an Agenda for Population Aging and Social Research in Low- and Middle-Income Countries (LMICs) Developing an Agenda for Population Aging and Social Research in Low- and Middle-Income Countries (LMICs)
2024