Big Data Analytics: Systems, Algorithms, Applications Big Data Analytics: Systems, Algorithms, Applications

Big Data Analytics: Systems, Algorithms, Applications

C.S.R. Prabhu et autres
    • 54,99 $
    • 54,99 $

Description de l’éditeur

This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn,the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.

GENRE
Informatique et Internet
SORTIE
2019
14 octobre
LANGUE
EN
Anglais
LONGUEUR
438
Pages
ÉDITEUR
Springer Nature Singapore
VENDEUR
Springer Nature B.V.
TAILLE
67,3
 Mo
Machine Learning and Big Data Machine Learning and Big Data
2020
Data Mining for Business Applications Data Mining for Business Applications
2008
Data Engineering Data Engineering
2009
Apply Data Science Apply Data Science
2023
Business Intelligence for the Real-Time Enterprise Business Intelligence for the Real-Time Enterprise
2009
Computational Intelligence in Data Science Computational Intelligence in Data Science
2021