Construction of Fundamental Data Structures for Strings Construction of Fundamental Data Structures for Strings
SpringerBriefs in Computer Science

Construction of Fundamental Data Structures for Strings

Felipe A. Louza et autres
    • 44,99 $
    • 44,99 $

Description de l’éditeur

This books reviews recent theoretical and practical advances on suffix sorting and introduces algorithmic solutions to problems of wide interest for the construction of fundamental data structures that operate efficiently on strings namely, constructing the suffix array, the longest common prefix (LCP) array, the document array and the Lyndon array. 
These data structures are the cornerstone of many algorithmic solutions in Bioiformatics, Information Retrieval and Data Compression.  
This book introduces the relevant problem areas, their importance, the notation and related algorithms and then presents the algorithmic solutions for indexing data structure constructions.
This book is intended for graduate students, researchers and practitioners from Computer Science and Bioinformatics with a strong interest in algorithmic aspects.

GENRE
Informatique et Internet
SORTIE
2020
7 octobre
LANGUE
EN
Anglais
LONGUEUR
113
Pages
ÉDITEUR
Springer International Publishing
VENDEUR
Springer Nature B.V.
TAILLE
13
 Mo
String Processing and Information Retrieval String Processing and Information Retrieval
2021
Combinatorial Pattern Matching Combinatorial Pattern Matching
2007
Combinatorial Pattern Matching Combinatorial Pattern Matching
2011
String Processing and Information Retrieval String Processing and Information Retrieval
2008
String Processing and Information Retrieval String Processing and Information Retrieval
2017
Combinatorial Pattern Matching Combinatorial Pattern Matching
2008
The Amazing Journey of Reason The Amazing Journey of Reason
2019
Neuro Symbolic Reasoning and Learning Neuro Symbolic Reasoning and Learning
2023
Objective Information Theory Objective Information Theory
2023
Developing Sustainable and Energy-Efficient Software Systems Developing Sustainable and Energy-Efficient Software Systems
2023
Deep Neural Networks in a Mathematical Framework Deep Neural Networks in a Mathematical Framework
2018
Big Data Big Data
2014