Cartesian Cubical Model Categories Cartesian Cubical Model Categories
Lecture Notes in Mathematics

Cartesian Cubical Model Categories

    • CHF 65.00
    • CHF 65.00

Beschreibung des Verlags

This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2026
2. Januar
SPRACHE
EN
Englisch
UMFANG
152
Seiten
VERLAG
Springer Nature Switzerland
GRÖSSE
18.4
 MB
Relational Topology Relational Topology
2018
Finite Difference Methods for Fractional Diffusion Equations Finite Difference Methods for Fractional Diffusion Equations
2026
Numerical Methods for Metric Graphs Numerical Methods for Metric Graphs
2025
Relative Rearrangement Relative Rearrangement
2025
Global Logarithmic Deformation Theory Global Logarithmic Deformation Theory
2025
Discrete Weak KAM Theory Discrete Weak KAM Theory
2025