Flexible Regression and Smoothing Flexible Regression and Smoothing
Chapman & Hall/CRC The R Series

Flexible Regression and Smoothing

Using GAMLSS in R

    • CHF 56.00
    • CHF 56.00

Beschreibung des Verlags

This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent.

In particular, the GAMLSS statistical framework enables flexible regression and smoothing models to be fitted to the data. The GAMLSS model assumes that the response variable has any parametric (continuous, discrete or mixed) distribution which might be heavy- or light-tailed, and positively or negatively skewed. In addition, all the parameters of the distribution (location, scale, shape) can be modelled as linear or smooth functions of explanatory variables.

Key Features:
Provides a broad overview of flexible regression and smoothing techniques to learn from data whilst also focusing on the practical application of methodology using GAMLSS software in R. Includes a comprehensive collection of real data examples, which reflect the range of problems addressed by GAMLSS models and provide a practical illustration of the process of using flexible GAMLSS models for statistical learning. R code integrated into the text for ease of understanding and replication. Supplemented by a website with code, data and extra materials.
This book aims to help readers understand how to learn from data encountered in many fields. It will be useful for practitioners and researchers who wish to understand and use the GAMLSS models to learn from data and also for students who wish to learn GAMLSS through practical examples.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2017
21. April
SPRACHE
EN
Englisch
UMFANG
571
Seiten
VERLAG
CRC Press
GRÖSSE
20.5
 MB
Interactive Web-Based Data Visualization with R, plotly, and shiny Interactive Web-Based Data Visualization with R, plotly, and shiny
2020
Introduction to Political Analysis in R Introduction to Political Analysis in R
2025
Displaying Time Series, Spatial, and Space-Time Data with R Displaying Time Series, Spatial, and Space-Time Data with R
2025
Copula Additive Distributional Regression Using R Copula Additive Distributional Regression Using R
2025
Spatio-Temporal Statistics with R Spatio-Temporal Statistics with R
2019
Microeconometrics with R Microeconometrics with R
2025