Practical Weak Supervision Practical Weak Supervision

Practical Weak Supervision

Wee Hyong Tok und andere
    • CHF 75.00
    • CHF 75.00

Beschreibung des Verlags

Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models.

You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build.
Get up to speed on the field of weak supervision, including ways to use it as part of the data science processUse Snorkel AI for weak supervision and data programmingGet code examples for using Snorkel to label text and image datasetsUse a weakly labeled dataset for text and image classificationLearn practical considerations for using Snorkel with large datasets and using Spark clusters to scale labeling

GENRE
Computer und Internet
ERSCHIENEN
2021
30. September
SPRACHE
EN
Englisch
UMFANG
192
Seiten
VERLAG
O'Reilly Media
GRÖSSE
8.5
 MB
Practical Automated Machine Learning on Azure Practical Automated Machine Learning on Azure
2019
Deep Learning with Azure Deep Learning with Azure
2018
Predictive Analytics with Microsoft Azure Machine Learning 2nd Edition Predictive Analytics with Microsoft Azure Machine Learning 2nd Edition
2015
Predictive Analytics with Microsoft Azure Machine Learning Predictive Analytics with Microsoft Azure Machine Learning
2014