Self-Normalized Processes Self-Normalized Processes
Probability and Its Applications

Self-Normalized Processes

Limit Theory and Statistical Applications

Victor H. Peña und andere
    • CHF 70.00
    • CHF 70.00

Beschreibung des Verlags

Self-normalized processes are of common occurrence in probabilistic and statistical studies. A prototypical example is Student's t-statistic introduced in 1908 by Gosset, whose portrait is on the front cover. Due to the highly non-linear nature of these processes, the theory experienced a long period of slow development. In recent years there have been a number of important advances in the theory and applications of self-normalized processes. Some of these developments are closely linked to the study of central limit theorems, which imply that self-normalized processes are approximate pivots for statistical inference.

The present volume covers recent developments in the area, including self-normalized large and moderate deviations, and laws of the iterated logarithms for self-normalized martingales. This is the first book that systematically treats the theory and applications of self-normalization.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2008
25. Dezember
SPRACHE
EN
Englisch
UMFANG
289
Seiten
VERLAG
Springer Berlin Heidelberg
GRÖSSE
8.3
 MB
Stochastic Neutron Transport Stochastic Neutron Transport
2023
Discrete-Time Semi-Markov Random Evolutions and Their Applications Discrete-Time Semi-Markov Random Evolutions and Their Applications
2023
Renewal Theory for Perturbed Random Walks and Similar Processes Renewal Theory for Perturbed Random Walks and Similar Processes
2016
Stochastic Calculus and Applications Stochastic Calculus and Applications
2015
Invariant Probabilities of Transition Functions Invariant Probabilities of Transition Functions
2014
Analysis of Variations for Self-similar Processes Analysis of Variations for Self-similar Processes
2013