A Theory of Traces and the Divergence Theorem A Theory of Traces and the Divergence Theorem
Lecture Notes in Mathematics

A Theory of Traces and the Divergence Theorem

    • 54,99 €
    • 54,99 €

Beschreibung des Verlags

This book provides a new approach to traces, which are viewed as linear continuous functionals on some function space. A key role in the analysis is played by integrals related to finitely additive measures, which have not previously been considered in the literature. This leads to Gauss-Green formulas on arbitrary Borel sets for vector fields having divergence measure as well as for Sobolev and BV functions. The integrals used do not require trace functions or normal fields on the boundary and they can deal with inner boundaries. For the treatment of apparently intractable degenerate cases a second boundary integral is used. The calculus developed here also allows integral representations for the precise representative of an integrable function and for the usual boundary trace of Sobolev or BV functions. The theory presented gives a new perspective on traces for beginners as well as experts interested in partial differential equations. The integral calculus might also be a stimulating tool for geometric measure theory.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2025
11. August
SPRACHE
EN
Englisch
UMFANG
187
Seiten
VERLAG
Springer Nature Switzerland
ANBIETERINFO
Springer Science & Business Media LLC
GRÖSSE
35,6
 MB
Vector-Valued Partial Differential Equations and Applications Vector-Valued Partial Differential Equations and Applications
2017
The Ricci Flow in Riemannian Geometry The Ricci Flow in Riemannian Geometry
2010
Information Geometry Information Geometry
2008
Mathematical Theory of Feynman Path Integrals Mathematical Theory of Feynman Path Integrals
2008
Numerical Methods for Metric Graphs Numerical Methods for Metric Graphs
2025
Relative Rearrangement Relative Rearrangement
2025