Approaching the Kannan-Lovász-Simonovits and Variance Conjectures Approaching the Kannan-Lovász-Simonovits and Variance Conjectures
Lecture Notes in Mathematics

Approaching the Kannan-Lovász-Simonovits and Variance Conjectures

    • 29,99 €
    • 29,99 €

Publisher Description

Focusing on two central conjectures from the field of Asymptotic Geometric Analysis, the Kannan-Lovász-Simonovits spectral gap conjecture and the variance conjecture, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the topics treated. Employing a style suitable for professionals with little background in analysis, geometry or probability, the work goes directly to the connection between isoperimetric-type inequalities and functional inequalities, allowing readers to quickly access the core of these conjectures.
In addition, four recent and important results concerning this theory are presented. The first two are theorems attributed to Eldan-Klartag and Ball-Nguyen, which relate the variance and the KLS conjectures, respectively, to the hyperplane conjecture. The remaining two present in detail the main ideas needed to prove the best known estimate for the thin-shell width given by Guédon-Milman, and an approach to Eldan’s work on the connection between the thin-shell width and the KLS conjecture.

GENRE
Science & Nature
RELEASED
2015
7 January
LANGUAGE
EN
English
LENGTH
158
Pages
PUBLISHER
Springer International Publishing
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
3.1
MB
Vector-Valued Partial Differential Equations and Applications Vector-Valued Partial Differential Equations and Applications
2017
The Ricci Flow in Riemannian Geometry The Ricci Flow in Riemannian Geometry
2010
Information Geometry Information Geometry
2008
Mathematical Theory of Feynman Path Integrals Mathematical Theory of Feynman Path Integrals
2008
Numerical Methods for Metric Graphs Numerical Methods for Metric Graphs
2025
Relative Rearrangement Relative Rearrangement
2025