Change Point Analysis for Time Series Change Point Analysis for Time Series
Springer Series in Statistics

Change Point Analysis for Time Series

    • 114,99 €
    • 114,99 €

Beschreibung des Verlags

This volume provides a comprehensive survey that covers various modern methods used for detecting and estimating change points in time series and their models. The book primarily focuses on asymptotic theory and practical applications of change point analysis. The methods discussed in the book go beyond the traditional change point methods for univariate and multivariate series. It also explores techniques for handling heteroscedastic series, high-dimensional series, and functional data. While the primary emphasis is on retrospective change point analysis, the book also presents sequential "on-line" methods for detecting change points in real-time scenarios. Each chapter in the book includes multiple data examples that illustrate the practical application of the developed results. These examples cover diverse fields such as economics, finance, environmental studies, and health data analysis. To reinforce the understanding of the material, each chapter concludes with several exercises. Additionally, the book provides a discussion of background literature, allowing readers to explore further resources for in-depth knowledge on specific topics. Overall, "Change Point Analysis for Time Series" offers a broad and informative overview of modern methods in change point analysis, making it a valuable resource for researchers, practitioners, and students interested in analyzing and modeling time series data.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2024
11. Mai
SPRACHE
EN
Englisch
UMFANG
558
Seiten
VERLAG
Springer Nature Switzerland
ANBIETERINFO
Springer Science & Business Media LLC
GRÖSSE
99,8
 MB
The Elements of Statistical Learning The Elements of Statistical Learning
2009
The Design and Analysis of Computer Experiments The Design and Analysis of Computer Experiments
2019
Regression Modeling Strategies Regression Modeling Strategies
2015
Hidden Markov Processes and Adaptive Filtering Hidden Markov Processes and Adaptive Filtering
2025
Robust Statistics Through the Monitoring Approach Robust Statistics Through the Monitoring Approach
2025
Ten Projects in Applied Statistics Ten Projects in Applied Statistics
2023