Computational Methods in Physics Computational Methods in Physics

Computational Methods in Physics

Compendium for Students

    • 87,99 €
    • 87,99 €

Beschreibung des Verlags

This book is intended to help advanced undergraduate, graduate, and postdoctoral students in their daily work by offering them a compendium of numerical methods. The choice of methods pays significant attention to error estimates, stability and convergence issues, as well as optimization of program execution speeds. Numerous examples are given throughout the chapters, followed by comprehensive end-of-chapter problems with a more pronounced physics background, while less stress is given to the explanation of individual algorithms. The readers are encouraged to develop a certain amount of skepticism and scrutiny instead of blindly following readily available commercial tools.

The second edition has been enriched by a chapter on inverse problems dealing with the solution of integral equations, inverse Sturm-Liouville problems, as well as retrospective and recovery problems for partial differential equations. The revised text now includes an introduction to sparse matrix methods, the solution of matrix equations, and pseudospectra of matrices; it discusses the sparse Fourier, non-uniform Fourier and discrete wavelet transformations, the basics of non-linear regression and the Kolmogorov-Smirnov test; it demonstrates the key concepts in solving stiff differential equations and the asymptotics of Sturm-Liouville eigenvalues and eigenfunctions. Among other updates, it also presents the techniques of state-space reconstruction, methods to calculate the matrix exponential, generate random permutations and compute stable derivatives.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2018
21. Juni
SPRACHE
EN
Englisch
UMFANG
904
Seiten
VERLAG
Springer International Publishing
ANBIETERINFO
Springer Science & Business Media LLC
GRÖSSE
24,9
 MB
Trends in Differential Equations and Applications Trends in Differential Equations and Applications
2016
Approximation Theory XV: San Antonio 2016 Approximation Theory XV: San Antonio 2016
2017
Applied Inverse Problems Applied Inverse Problems
2013
A Graduate Introduction to Numerical Methods A Graduate Introduction to Numerical Methods
2013
Numerical Mathematics and Advanced Applications 2011 Numerical Mathematics and Advanced Applications 2011
2013
Advances in Differential Equations and Applications Advances in Differential Equations and Applications
2014
Probability for Physicists Probability for Physicists
2016
Computational Methods for Physicists Computational Methods for Physicists
2012