Kubeflow for Machine Learning Kubeflow for Machine Learning

Kubeflow for Machine Learning

Trevor Grant und andere
    • 39,99 €
    • 39,99 €

Beschreibung des Verlags

If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable.

Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises.
Understand Kubeflow's design, core components, and the problems it solvesUnderstand the differences between Kubeflow on different cluster typesTrain models using Kubeflow with popular tools including Scikit-learn, TensorFlow, and Apache SparkKeep your model up to date with Kubeflow PipelinesUnderstand how to capture model training metadataExplore how to extend Kubeflow with additional open source toolsUse hyperparameter tuning for trainingLearn how to serve your model in production

GENRE
Computer und Internet
ERSCHIENEN
2020
13. Oktober
SPRACHE
EN
Englisch
UMFANG
264
Seiten
VERLAG
O'Reilly Media
ANBIETERINFO
OREILLY MEDIA INC
GRÖSSE
12,9
 MB
Machine Learning on Kubernetes Machine Learning on Kubernetes
2022
The Machine Learning Solutions Architect Handbook The Machine Learning Solutions Architect Handbook
2022
Accelerate Deep Learning Workloads with Amazon SageMaker Accelerate Deep Learning Workloads with Amazon SageMaker
2022
Distributed Data Systems with Azure Databricks Distributed Data Systems with Azure Databricks
2021
Practical Machine Learning with AWS Practical Machine Learning with AWS
2020
Kubernetes Native Development Kubernetes Native Development
2022