Laser Assisted Nuclear Decay Spectroscopy Laser Assisted Nuclear Decay Spectroscopy

Laser Assisted Nuclear Decay Spectroscopy

A New Method for Studying Neutron-Deficient Francium Isotopes

    • 87,99 €
    • 87,99 €

Beschreibung des Verlags

This work details an application of collinear resonance ionization spectroscopy for the separation of short-lived isomeric states and their subsequent study with decay spectroscopy. It reports the successful construction of a novel decay spectroscopy apparatus that can operate at pressures below 1 x 10^-9 mbar. The method is demonstrated by separating the nuclear ground and isomeric states of 204Fr and performing alpha-decay spectroscopy. An equivalent mass spectrometer would require 4.6 million times as much resolution to achieve the same result. This work unambiguously confirms the existence of a second isomeric state in 204Fr. The author also demonstrates the effectiveness of this method for laser spectroscopy and identification of hyperfine-structure components with energy tagging. This method was successfully used in 202Fr to identify ground and isomeric states. The measurement of 202Fr reported in this thesis demonstrates a factor of 100 improvement in sensitivity compared to state-of-the-art fluorescence techniques. The work reported in this thesis won the author the IOP Nuclear Physics Group Early Career Prize

GENRE
Wissenschaft und Natur
ERSCHIENEN
2014
16. Juli
SPRACHE
EN
Englisch
UMFANG
144
Seiten
VERLAG
Springer International Publishing
ANBIETERINFO
Springer Science & Business Media LLC
GRÖSSE
4,6
 MB
Applied Laser Spectroscopy for Nuclear Physics Applied Laser Spectroscopy for Nuclear Physics
2021
Nuclear and Radiochemistry Nuclear and Radiochemistry
2013
Binding Energy of Strongly Deformed Radionuclides Binding Energy of Strongly Deformed Radionuclides
2015
The Euroschool Lectures on Physics with Exotic Beams, Vol. III The Euroschool Lectures on Physics with Exotic Beams, Vol. III
2008
Rare Isotope Beams Rare Isotope Beams
2021
State-of-the-Art Reviews on Energetic Ion-Atom and Ion-Molecule Collisions State-of-the-Art Reviews on Energetic Ion-Atom and Ion-Molecule Collisions
2019