Lyapunov-type Inequalities Lyapunov-type Inequalities
SpringerBriefs in Mathematics

Lyapunov-type Inequalities

With Applications to Eigenvalue Problems

    • 42,99 €
    • 42,99 €

Beschreibung des Verlags

​The eigenvalue problems for quasilinear and nonlinear operators present many differences with the linear case, and a Lyapunov inequality for quasilinear resonant systems showed the existence of  eigenvalue asymptotics driven by the coupling of the equations instead of the order of the equations. For p=2, the coupling and the order of the equations are the same, so this cannot happen in linear problems.  Another striking difference between linear and quasilinear second order differential operators is the existence of Lyapunov-type inequalities in R^n when p>n. Since the linear case corresponds to p=2, for the usual Laplacian there exists a Lyapunov inequality only for one-dimensional problems. For linear higher order problems, several Lyapunov-type inequalities were found by Egorov and Kondratiev and collected in On spectral theory of elliptic operators, Birkhauser Basel 1996. However, there exists an interesting interplay between the dimension of the underlying space, the order of the differential operator, the Sobolev space where the operator is defined, and the norm of the weight appearing in the inequality which is not fully developed.   Also, the Lyapunov inequality for differential equations in Orlicz spaces can be used to develop an oscillation theory, bypassing the classical sturmian theory which is not known yet for those equations. For more general operators, like the p(x) laplacian, the possibility of existence of Lyapunov-type inequalities remains unexplored.  ​

GENRE
Wissenschaft und Natur
ERSCHIENEN
2013
14. September
SPRACHE
EN
Englisch
UMFANG
144
Seiten
VERLAG
Springer New York
ANBIETERINFO
Springer Science & Business Media LLC
GRÖSSE
2,4
 MB
Twisted Isospectrality, Homological Wideness, and Isometry Twisted Isospectrality, Homological Wideness, and Isometry
2023
Fixed Points of Semigroups of Pointwise Lipschitzian Operators Fixed Points of Semigroups of Pointwise Lipschitzian Operators
2026
Magnetic Equivariant K-Theory Magnetic Equivariant K-Theory
2026
Attractors of Caputo Fractional Differential Equations Attractors of Caputo Fractional Differential Equations
2026
Homogenisation of Laminated Metamaterials and the Inner Spectrum Homogenisation of Laminated Metamaterials and the Inner Spectrum
2025
Turnpike Phenomenon for Markov Decision Processes Turnpike Phenomenon for Markov Decision Processes
2025