Minimal Surfaces Minimal Surfaces

Minimal Surfaces

Ulrich Dierkes und andere
    • 89,99 €
    • 89,99 €

Beschreibung des Verlags

Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces.
The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296).
The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling´s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto.
The second part of this volume begins with a survey of Plateau´s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components.
Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche´s uniqueness theorem and Tomi´s finiteness result.
In addition, a theory of unstable solutions of Plateau´s problems is developed which is based on Courant´s mountain pass lemma. Furthermore, Dirichlet´s problem for nonparametric H-surfaces is solved, using the solution of Plateau´s problem for H-surfaces and the pertinent estimates.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2010
16. August
SPRACHE
EN
Englisch
UMFANG
708
Seiten
VERLAG
Springer Berlin Heidelberg
ANBIETERINFO
Springer Science & Business Media LLC
GRÖSSE
24,3
 MB
Regularity of Minimal Surfaces Regularity of Minimal Surfaces
2010
Global Analysis of Minimal Surfaces Global Analysis of Minimal Surfaces
2010
Nonlocal Diffusion and Applications Nonlocal Diffusion and Applications
2016
Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields
2013
Complex and Symplectic Geometry Complex and Symplectic Geometry
2017
On the Geometry of Some Special Projective Varieties On the Geometry of Some Special Projective Varieties
2016
Global Analysis of Minimal Surfaces Global Analysis of Minimal Surfaces
2010
Regularity of Minimal Surfaces Regularity of Minimal Surfaces
2010