Nonlinear Optimization Nonlinear Optimization

Nonlinear Optimization

    • 104,99 €
    • 104,99 €

Beschreibung des Verlags

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures.

The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems.

Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.

GENRE
Wissenschaft und Natur
ERSCHIENEN
2011
19. September
SPRACHE
EN
Englisch
UMFANG
464
Seiten
VERLAG
Princeton University Press
ANBIETERINFO
Princeton University Press
GRÖSSE
58,3
 MB
Nonlinear Optimization Nonlinear Optimization
2019
Optimization—Theory and Practice Optimization—Theory and Practice
2010
Optimization Theory and Methods Optimization Theory and Methods
2006
An Introduction to Optimization An Introduction to Optimization
2011
Vector Optimization Vector Optimization
2010
Linear Algebra and Optimization with Applications to Machine Learning Linear Algebra and Optimization with Applications to Machine Learning
2020