A Dressing Method in Mathematical Physics A Dressing Method in Mathematical Physics
Mathematical Physics Studies

A Dressing Method in Mathematical Physics

    • USD 149.99
    • USD 149.99

Descripción editorial

The monograph is devoted to the systematic presentation of the so called "dressing method" for solving differential equations (both linear and nonlinear) of mathematical physics. The essence of the dressing method consists in a generation of new non-trivial solutions of a given equation from (maybe trivial) solution of the same or related equation. The Moutard and Darboux transformations discovered in XIX century as applied to linear equations, the Bäcklund transformation in differential geometry of surfaces, the factorization method, the Riemann-Hilbert problem in the form proposed by Shabat and Zakharov for soliton equations and its extension in terms of the d-bar formalism comprise the main objects of the book. Throughout the text, a generally sufficient "linear experience" of readers is exploited, with a special attention to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions. Various linear equations of classical and quantum mechanics are solved by the Darboux and factorization methods. An extension of the classical Darboux transformations to nonlinear equations in 1+1 and 2+1 dimensions, as well as its factorization are discussed in detail. The applicability of the local and non-local Riemann-Hilbert problem-based approach and its generalization in terms of the d-bar method are illustrated on various nonlinear equations.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2007
19 de mayo
IDIOMA
EN
Inglés
EXTENSIÓN
407
Páginas
EDITORIAL
Springer Netherlands
VENDEDOR
Springer Nature B.V.
TAMAÑO
35.6
MB
Geometry, Topology and Operator Algebras Geometry, Topology and Operator Algebras
2025
Symbolic Dynamical Systems and C*-Algebras Symbolic Dynamical Systems and C*-Algebras
2025
Spectral Analysis of N-Body Schrödinger Operators at Two-Cluster Thresholds Spectral Analysis of N-Body Schrödinger Operators at Two-Cluster Thresholds
2024
Korteweg–de Vries Flows with General Initial Conditions Korteweg–de Vries Flows with General Initial Conditions
2024
Some Musings on Theta, Eta, and Zeta Some Musings on Theta, Eta, and Zeta
2023
Many-Body Schrödinger Equation Many-Body Schrödinger Equation
2023