Fluoride Removal from Groundwater by Adsorption Technology Fluoride Removal from Groundwater by Adsorption Technology
IHE Delft PhD Thesis Series

Fluoride Removal from Groundwater by Adsorption Technology

    • USD 114.99
    • USD 114.99

Descripción editorial

In the Eastern corridor of Northern region of Ghana, presence of high fluoride concentration in the groundwater has made many drilled boreholes unusable for drinking. Little is, however, known about the factors contributing to the occurrence of high fluoride in this part of Ghana and it’s spatial distribution. Treatment of the fluoride-contaminated groundwater by adsorption is also hampered by the lack of suitable adsorbents that are locally available.

Based on principal component analysis, and saturation indices calculations, this thesis highlights that, the predominant mechanisms controlling the fluoride enrichment probably include calcite precipitation and Na/Ca exchange processes, both of which deplete Ca from the groundwater, and promote the dissolution of fluorite. The mechanisms also include F-/OH- anion exchange processes, as well as evapotranspiration processes which concentrate the fluoride ions, hence increasing its concentration in the groundwater. Spatial mapping showed that the high fluoride groundwaters occur predominantly in the Saboba, Cheriponi and Yendi districts.

The thesis further highlights that, modifying the surface of indigenous materials by an aluminium coating process, is a very promising approach to develop a suitable fluoride adsorbent. Aluminum oxide coated media reduced fluoride in water from 5. 0 ± 0.2 mg/L to ≤ 1.5 mg/L (which is the WHO health based guideline for fluoride), in both batch and continuous flow column experiments in the laboratory. Kinetic and isotherm studies, thermodynamic calculations, as well as analytical results from Fourier Transform Infrared Spectroscopy and Raman spectroscopy, suggest the mechanism of fluoride adsorption onto aluminium oxide coated media involved both physisorption and chemisorption processes.

Field testing in a fluoritic community in Northern Ghana showed that the adsorbent is also capable of treating fluoride-contaminated groundwater in field conditions, suggesting it is a promising defluoridation adsorbent. The adsorbent also showed good regenerability potential that would allow re-use, which could make it practically and economically viable. Additional research is, however, required to further increase the fluoride adsorption capacity of developed adsorbent.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2017
13 de noviembre
IDIOMA
EN
Inglés
EXTENSIÓN
300
Páginas
EDITORIAL
CRC Press
VENDEDOR
Taylor & Francis Group
TAMAÑO
11.3
MB

Otros libros de esta serie

Multiple Objective Treatment Aspects of Bank Filtration Multiple Objective Treatment Aspects of Bank Filtration
2023
Grasping the Water, Energy, and Food Security Nexus in the Local Context Grasping the Water, Energy, and Food Security Nexus in the Local Context
2021
Adaptive Disaster Risk Assessment Adaptive Disaster Risk Assessment
2021
Establishing the Environmental Flow Regime for the Middle Zambezi River Establishing the Environmental Flow Regime for the Middle Zambezi River
2021
Simultaneous Sulfate Reduction and Metal Precipitation in an Inverse Fluidized Bed Reactor Simultaneous Sulfate Reduction and Metal Precipitation in an Inverse Fluidized Bed Reactor
2022
Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium
2021