Least-Squares Finite Element Methods Least-Squares Finite Element Methods
Applied Mathematical Sciences

Least-Squares Finite Element Methods

    • USD 109.99
    • USD 109.99

Publisher Description

The book examines theoretical and computational aspects of least-squares finite element methods(LSFEMs) for partial differential equations (PDEs) arising in key science and engineering applications. It is intended for mathematicians, scientists, and engineers interested in either or both the theory and practice associated with the numerical solution of PDEs.

The first part looks at strengths and weaknesses of classical variational principles, reviews alternative variational formulations, and offers a glimpse at the main concepts that enter into the formulation of LSFEMs. Subsequent parts introduce mathematical frameworks for LSFEMs and their analysis, apply the frameworks to concrete PDEs, and discuss computational properties of resulting LSFEMs. Also included are recent advances such as compatible LSFEMs, negative-norm LSFEMs, and LSFEMs for optimal control and design problems. Numerical examples illustrate key aspects of the theory ranging from the importance of norm-equivalence to connections between compatible LSFEMs and classical-Galerkin and mixed-Galerkin methods.

Pavel Bochev is a Distinguished Member of the Technical Staff at Sandia National Laboratories with research interests in compatible discretizations for PDEs, multiphysics problems, and scientific computing.

Max Gunzburger is Frances Eppes Professor of Scientific Computing and Mathematics at Florida State University and recipient of the W.T. and Idelia Reid Prize in Mathematics from the Society for Industrial and Applied Mathematics.

GENRE
Science & Nature
RELEASED
2009
28 April
LANGUAGE
EN
English
LENGTH
682
Pages
PUBLISHER
Springer New York
SELLER
Springer Nature B.V.
SIZE
14.9
MB
Nonlinear Functional Analysis with Applications to Combustion Theory Nonlinear Functional Analysis with Applications to Combustion Theory
2025
Inverse Problems for Integro-differential Operators Inverse Problems for Integro-differential Operators
2025
The Riemann Problem in Continuum Physics The Riemann Problem in Continuum Physics
2024
Normal Forms and Stability of Hamiltonian Systems Normal Forms and Stability of Hamiltonian Systems
2023
Multiscale Model Reduction Multiscale Model Reduction
2023
Elements of Applied Bifurcation Theory Elements of Applied Bifurcation Theory
2023