Advanced Statistics with Applications in R Advanced Statistics with Applications in R
Wiley Series in Probability and Statistics

Advanced Statistics with Applications in R

    • 104,99 €
    • 104,99 €

Descripción editorial

Advanced Statistics with Applications in R fills the gap between several excellent theoretical statistics textbooks and many applied statistics books where teaching reduces to using existing packages. This book looks at what is under the hood. Many statistics issues including the recent crisis with p-value are caused by misunderstanding of statistical concepts due to poor theoretical background of practitioners and applied statisticians. This book is the product of a forty-year experience in teaching of probability and statistics and their applications for solving real-life problems.


There are more than 442 examples in the book: basically every probability or statistics concept is illustrated with an example accompanied with an R code. Many examples, such as Who said π? What team is better? The fall of the Roman empire, James Bond chase problem, Black Friday shopping, Free fall equation: Aristotle or Galilei, and many others are intriguing. These examples cover biostatistics, finance, physics and engineering, text and image analysis, epidemiology, spatial statistics, sociology, etc.


Advanced Statistics with Applications in R teaches students to use theory for solving real-life problems through computations: there are about 500 R codes and 100 datasets. These data can be freely downloaded from the author's website dartmouth.edu/~eugened.


This book is suitable as a text for senior undergraduate students with major in statistics or data science or graduate students. Many researchers who apply statistics on the regular basis find explanation of many fundamental concepts from the theoretical perspective illustrated by concrete real-world applications.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2019
26 de noviembre
IDIOMA
EN
Inglés
EXTENSIÓN
880
Páginas
EDITORIAL
Wiley
John Wiley & Sons Ltd
TAMAÑO
120,1
MB
M-statistics M-statistics
2023
Mixed Models Mixed Models
2013
Biostatistical Methods Biostatistical Methods
2014
An Introduction to Cochran-Mantel-Haenszel Testing and Nonparametric ANOVA An Introduction to Cochran-Mantel-Haenszel Testing and Nonparametric ANOVA
2023
Nonparametric Statistics with Applications to Science and Engineering with R Nonparametric Statistics with Applications to Science and Engineering with R
2022
Pricing Insurance Risk Pricing Insurance Risk
2022
Design of Experiments for Reliability Achievement Design of Experiments for Reliability Achievement
2022
Spatial Analysis Spatial Analysis
2022