Forest Analytics with R Forest Analytics with R
Use R

Forest Analytics with R

An Introduction

    • 46,99 €
    • 46,99 €

Publisher Description

Forest Analytics with R combines practical, down-to-earth forestry data analysis and solutions to real forest management challenges with state-of-the-art statistical and data-handling functionality. The
authors adopt a problem-driven approach, in which statistical and mathematical tools are introduced in the context of the forestry problem that they can help to resolve. All the tools are introduced in the context of real forestry datasets, which provide compelling examples of practical applications.
The modeling challenges covered within the book include imputation and interpolation for spatial data, fitting probability density functions to tree measurement data using maximum likelihood, fitting allometric functions using both linear and non-linear least-squares regression, and fitting growth models using both linear and non-linear mixed-effects modeling. The coverage also includes deploying and
using forest growth models written in compiled languages, analysis of natural resources and forestry inventory data, and forest estate planning and optimization using linear programming.
The book would be ideal for a one-semester class in forest biometrics or applied statistics for natural resources management. The text assumes no programming background, some introductory statistics,
and very basic applied mathematics.
Andrew Robinson has been associate professor of forest mensuration and forest biometrics at the University of Idaho, and is currently senior lecturer in applied statistics at the University of Melbourne. He received his PhD in forestry from the University of Minnesota. Robinson is author of the popular and freely-available "icebreakeR" document.
Jeff Hamann has been a software developer, forester, and financial analyst. He is currently a consultant specializing in forestry, operations research, and geographic information sciences. He received his PhD in forestry from Oregon State University.
Both authors have presented numerous R workshops to forestry professionals and scientists, and others.

GENRE
Professional & Technical
RELEASED
2010
5 November
LANGUAGE
EN
English
LENGTH
368
Pages
PUBLISHER
Springer New York
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
8.1
MB
Statistical Analysis of Network Data with R Statistical Analysis of Network Data with R
2020
Applied Survival Analysis Using R Applied Survival Analysis Using R
2016
Applied Spatial Data Analysis with R Applied Spatial Data Analysis with R
2013
Introducing Monte Carlo Methods with R Introducing Monte Carlo Methods with R
2009
Data Mining with Rattle and R Data Mining with Rattle and R
2011
Analysis of Integrated and Cointegrated Time Series with R Analysis of Integrated and Cointegrated Time Series with R
2008