Visual Question Answering Visual Question Answering

Visual Question Answering

From Theory to Application

Qi Wu and Others
    • 87,99 €
    • 87,99 €

Publisher Description

Visual Question Answering (VQA) usually combines visual inputs like image and video with a natural language question concerning the input and generates a natural language answer as the output. This is by nature a multi-disciplinary research problem, involving computer vision (CV), natural language processing (NLP), knowledge representation and reasoning (KR), etc.

Further, VQA is an ambitious undertaking, as it must overcome the challenges of general image understanding and the question-answering task, as well as the difficulties entailed by using large-scale databases with mixed-quality inputs. However, with the advent of deep learning (DL) and driven by the existence of advanced techniques in both CV and NLP and the availability of relevant large-scale datasets, we have recently seen enormous strides in VQA, with more systems and promising results emerging.

This book provides a comprehensive overview of VQA, covering fundamental theories, models, datasets, andpromising future directions. Given its scope, it can be used as a textbook on computer vision and natural language processing, especially for researchers and students in the area of visual question answering. It also highlights the key models used in VQA.

GENRE
Computing & Internet
RELEASED
2022
13 May
LANGUAGE
EN
English
LENGTH
251
Pages
PUBLISHER
Springer Nature Singapore
SIZE
36.9
MB

More Books by Qi Wu, Peng Wang, Xin Wang, Xiaodong He & Wenwu Zhu

Self as Method Self as Method
2022
Neural Regulation of Metabolism Neural Regulation of Metabolism
2018