Deep Learning with Keras Deep Learning with Keras

Deep Learning with Keras

    • 37,99 €
    • 37,99 €

Description de l’éditeur

Get to grips with the basics of Keras to implement fast and efficient deep-learning models

About This Book

• Implement various deep-learning algorithms in Keras and see how deep-learning can be used in games
• See how various deep-learning models and practical use-cases can be implemented using Keras
• A practical, hands-on guide with real-world examples to give you a strong foundation in Keras

Who This Book Is For

If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.

What You Will Learn

• Optimize step-by-step functions on a large neural network using the Backpropagation Algorithm
• Fine-tune a neural network to improve the quality of results
• Use deep learning for image and audio processing
• Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special cases
• Identify problems for which Recurrent Neural Network (RNN) solutions are suitable
• Explore the process required to implement Autoencoders
• Evolve a deep neural network using reinforcement learning

In Detail

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of hand written digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GAN). You will also explore non-traditional uses of neural networks as Style Transfer.
Finally, you will look at Reinforcement Learning and its application to AI game playing, another popular direction of research and application of neural networks.

Style and approach

This book is an easy-to-follow guide full of examples and real-world applications to help you gain an in-depth understanding of Keras. This book will showcase more than twenty working Deep Neural Networks coded in Python using Keras.

GENRE
Informatique et Internet
SORTIE
2017
26 avril
LANGUE
EN
Anglais
LONGUEUR
318
Pages
ÉDITIONS
Packt Publishing
DÉTAILS DU FOURNISSEUR
Lightning Source Inc Ingram DV LLC
TAILLE
42,4
Mo
Deep Learning Deep Learning
2017
Deep Learning with Python Deep Learning with Python
2017
Deep Learning With Python Illustrated Guide For Beginners & Intermediates: The Future Is Here! Deep Learning With Python Illustrated Guide For Beginners & Intermediates: The Future Is Here!
2019
TensorFlow in 1 Day TensorFlow in 1 Day
2019
Practical Deep Learning Practical Deep Learning
2021
Deep Learning with PyTorch Deep Learning with PyTorch
2020
Agentic Design Patterns Agentic Design Patterns
2025
Google Anthos in Action Google Anthos in Action
2023
TensorFlow 1.x Deep Learning Cookbook TensorFlow 1.x Deep Learning Cookbook
2017