Founding Mathematics on Semantic Conventions Founding Mathematics on Semantic Conventions

Founding Mathematics on Semantic Conventions

    • 94,99 €
    • 94,99 €

Publisher Description

This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language – and specifically, the ability to institute conventions for the truth conditions of sentences.

This philosophical stance leads to an alternative way of practicing mathematics: instead of “building” objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory.

Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis.

Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell’s paradox and the other mathematical paradoxes of self-reference.

In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.

GENRE
Science & Nature
RELEASED
2021
4 November
LANGUAGE
EN
English
LENGTH
267
Pages
PUBLISHER
Springer International Publishing
PROVIDER INFO
Springer Science & Business Media LLC
SIZE
5.8
MB
Truth, Existence and Explanation Truth, Existence and Explanation
2018
Gödel's Disjunction Gödel's Disjunction
2016
Objects, Structures, and Logics Objects, Structures, and Logics
2022
Logicism, Intuitionism, and Formalism Logicism, Intuitionism, and Formalism
2008
Origins and Varieties of Logicism Origins and Varieties of Logicism
2021
Hilary Putnam on Logic and Mathematics Hilary Putnam on Logic and Mathematics
2018