Machine Learning Machine Learning
Wiley Series in Probability and Statistics

Machine Learning

A Concise Introduction

    • 87,99 €
    • 87,99 €

Description de l’éditeur

New edition of a PROSE award finalist title on core concepts for machine learning, updated with the latest developments in the field, now with Python and R source code side-by-side

Machine Learning is a comprehensive text on the core concepts, approaches, and applications of machine learning. It presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. New content for this edition includes chapter expansions which provide further computational and algorithmic insights to improve reader understanding. This edition also revises several chapters to account for developments since the prior edition.

In this book, the design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods, enabling readers to solve applied problems more efficiently and effectively. This book also includes methods for optimization, risk estimation, model selection, and dealing with biased data samples and software limitations — essential elements of most applied projects.

Written by an expert in the field, this important resource:
Illustrates many classification methods with a single, running example, highlighting similarities and differences between methodsPresents side-by-side Python and R source code which shows how to apply and interpret many of the techniques coveredIncludes many thoughtful exercises as an integral part of the text, with an appendix of selected solutionsContains useful information for effectively communicating with clients on both technical and ethical topicsDetails classification techniques including likelihood methods, prototype methods, neural networks, classification trees, and support vector machines
A volume in the popular Wiley Series in Probability and Statistics, Machine Learning offers the practical information needed for an understanding of the methods and application of machine learning for advanced undergraduate and beginner graduate students, data science and machine learning practitioners, and other technical professionals in adjacent fields.

GENRE
Informatique et Internet
SORTIE
2026
6 février
LANGUE
EN
Anglais
LONGUEUR
432
Pages
ÉDITIONS
Wiley
DÉTAILS DU FOURNISSEUR
John Wiley & Sons Ltd
TAILLE
62,2
Mo
Robust Statistics Robust Statistics
2011
Advanced Statistics with Applications in R Advanced Statistics with Applications in R
2019
Fundamental Statistical Inference Fundamental Statistical Inference
2018
Machine Learning Machine Learning
2018
Applied Longitudinal Analysis Applied Longitudinal Analysis
2012
Understanding Uncertainty Understanding Uncertainty
2013