Manybody Physics, Topology And Geometry

 28,99 €

 28,99 €
Description de l’éditeur
The book explains concepts and ideas of mathematics and physics that are relevant for advanced students and researchers of condensed matter physics. With this aim, a brief intuitive introduction to manybody theory is given as a powerful qualitative tool for understanding complex systems. The important emergent concept of a quasiparticle is then introduced as a way to reduce a manybody problem to a single particle quantum problem. Examples of quasiparticles in graphene, superconductors, superfluids and in a topological insulator on a superconductor are discussed.
The mathematical idea of selfadjoint extension, which allows short distance information to be included in an effective long distance theory through boundary conditions, is introduced through simple examples and then applied extensively to analyse and predict new physical consequences for graphene.
The mathematical discipline of topology is introduced in an intuitive way and is then combined with the methods of differential geometry to show how the emergence of gapless states can be understood. Practical ways of carrying out topological calculations are described.
Contents:OverviewManyBody TheoryTopology and GeometryBoundary Conditions and SelfAdjoint ExtensionsElectronic Properties of Graphene
Readership: Graduate students and researchers in condensed matter physics and mathematical physics.
Key Features:Topics are of current interest, e.g. graphene, topological insulators, Majorana fermionsIs selfcontained and provides all the background material necessary to understand the physical or mathematical concepts discussedPractical ways of using topology, selfadjoint extensions as well as ways of making qualitative estimates in physics are explained and then illustrated by examples