Biological Threat Detection Via Host Gene Expression Profiling. Biological Threat Detection Via Host Gene Expression Profiling.

Biological Threat Detection Via Host Gene Expression Profiling‪.‬

Clinical Chemistry 2003, July, 49, 7

    • £2.99
    • £2.99

Publisher Description

The task of detecting biological threats is far more complicated than monitoring for other weapons of mass destruction. Measuring and quantifying radiation and chromatographic profiles indicative of nuclear and chemical threats, respectively, are relatively straightforward compared with the detection of biological weapon threats amid the tremendous biological background that comprises our environment. Most of the current biological warfare and environmental agent detection systems in field use or under prototype development rely on structural recognition approaches to identify anticipated agents or rely on "gold standard" culture conditions. Such assays, based primarily on antibodies, are highly specific for anticipated targets but provide only partial information concerning the pathogenicity of the threat. Current systems the military has implemented for threat identification have performed with limited success. In fact, the Pentagon Inspector General has criticized the "Joint Biological Point Detection System" for erratic limited performance (1). In addition, it is unclear how such an approach is applicable to the civilian population, where mass deployment of point detectors is not a feasible solution. Even with ideal detectors, proximity to a biological threat does not guarantee infection or illness. For threats such as Bacillus anthracis, the ability to preemptively treat individuals who were near dissemination sources with antibiotics is an option, if the dissemination source can be identified. Of further concern, a report has been published of a B. anthracis vaccine strain that had been engineered by Russian scientists to resist tetracycline antibiotics (2), raising the possibility that a quinolone-resistant B. anthracis could emerge as a biological weapon threat. Thus, not all biological threats can be treated as readily as during recent events, and there is a critical need to be able to quickly discern those individuals who are ill as a result of a bioagent etiology and to yield insight to the severity of illness.

GENRE
Science & Nature
RELEASED
2003
1 July
LANGUAGE
EN
English
LENGTH
15
Pages
PUBLISHER
American Association for Clinical Chemistry, Inc.
SIZE
171.6
KB
Gene Discovery for Disease Models Gene Discovery for Disease Models
2011
Microbial Forensics Microbial Forensics
2005
Chemical Diagnostics Chemical Diagnostics
2013
Applications of Advanced Omics Technologies: From Genes to Metabolites Applications of Advanced Omics Technologies: From Genes to Metabolites
2014
Molecular Analysis and Genome Discovery Molecular Analysis and Genome Discovery
2011
Animal Biotechnology Animal Biotechnology
2013
Single-Nucleotide Polymorphism Allele Frequencies Determined by Quantitative Kinetic Assay of Pooled Dna (Technical Briefs) Single-Nucleotide Polymorphism Allele Frequencies Determined by Quantitative Kinetic Assay of Pooled Dna (Technical Briefs)
2002
Interlaboratory Comparison of Fetal Male DNA Detection from Common Maternal Plasma Samples by Real-Time Pcr (Molecular Diagnostics and Genetics) Interlaboratory Comparison of Fetal Male DNA Detection from Common Maternal Plasma Samples by Real-Time Pcr (Molecular Diagnostics and Genetics)
2004
High Concentrations of Excised Oxidative DNA Lesions in Human Cerebrospinal Fluid (Technical Briefs) High Concentrations of Excised Oxidative DNA Lesions in Human Cerebrospinal Fluid (Technical Briefs)
2003
Doping in Sport: Misuse, Analytical Tests, And Legal Aspects (Editorial) Doping in Sport: Misuse, Analytical Tests, And Legal Aspects (Editorial)
1997
Relationship Between Genetic Polymorphisms of Alcohol-Metabolizing Enzymes and Changes in Risk Factors for Coronary Heart Disease Associated with Alcohol Consumption (Lipids, Lipoproteins, And Cardiovascular Risk Factors) Relationship Between Genetic Polymorphisms of Alcohol-Metabolizing Enzymes and Changes in Risk Factors for Coronary Heart Disease Associated with Alcohol Consumption (Lipids, Lipoproteins, And Cardiovascular Risk Factors)
2002
Detection of Mycobacterium Tuberculosis by Real-Time PCR Using Pan-Mycobacterial Primers and a Pair of Fluorescence Resonance Energy Transfer Probes Specific for the M. Tuberculosis Complex (Technical Briefs) Detection of Mycobacterium Tuberculosis by Real-Time PCR Using Pan-Mycobacterial Primers and a Pair of Fluorescence Resonance Energy Transfer Probes Specific for the M. Tuberculosis Complex (Technical Briefs)
2003