Connected Sets in Global Bifurcation Theory Connected Sets in Global Bifurcation Theory
SpringerBriefs in Mathematics

Connected Sets in Global Bifurcation Theory

    • £35.99
    • £35.99

Publisher Description

This book explores the topological properties of connected and path-connected solution sets for nonlinear equations in Banach spaces, focusing on the distinction between these concepts. Building on Rabinowitz's dichotomy, the authors introduce "congestion points"—where connected sets fail to be locally connected—and show their absence ensures path-connectedness. Through rigorous analysis and examples, the book provides new insights into global bifurcations.

Structured into seven chapters, the book begins with an introduction to global bifurcation theory and foundational concepts in set theory and metric spaces. Subsequent chapters delve into connectedness, local connectedness, and congestion points, culminating in the construction of intricate examples that highlight the complexities of solution sets. The authors' careful selection of material and fluent writing style make this work a valuable resource for PhD students and experts in functional analysis and bifurcation theory.

GENRE
Science & Nature
RELEASED
2025
29 April
LANGUAGE
EN
English
LENGTH
113
Pages
PUBLISHER
Springer Nature Switzerland
SIZE
24.4
MB
Ricci Flow for Shape Analysis and Surface Registration Ricci Flow for Shape Analysis and Surface Registration
2013
Homogenisation of Laminated Metamaterials and the Inner Spectrum Homogenisation of Laminated Metamaterials and the Inner Spectrum
2025
Turnpike Phenomenon for Markov Decision Processes Turnpike Phenomenon for Markov Decision Processes
2025
Connection Matrices in Combinatorial Topological Dynamics Connection Matrices in Combinatorial Topological Dynamics
2025
Non-Kähler Complex Surfaces and Strongly Pseudoconcave Surfaces Non-Kähler Complex Surfaces and Strongly Pseudoconcave Surfaces
2025
Stochastic Calculus in Infinite Dimensions and SPDEs Stochastic Calculus in Infinite Dimensions and SPDEs
2024