Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

    • £97.99
    • £97.99

Publisher Description

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.
The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:
Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4.
Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7.
Part III: Implementation and application of Deep Statistical Comparison – Chapter 8.

GENRE
Computing & Internet
RELEASED
2022
11 June
LANGUAGE
EN
English
LENGTH
150
Pages
PUBLISHER
Springer International Publishing
SIZE
11.5
MB
Learning and Intelligent Optimization Learning and Intelligent Optimization
2010
Learning and Intelligent Optimization Learning and Intelligent Optimization
2016
Evolutionary Multi-Criterion Optimization Evolutionary Multi-Criterion Optimization
2011
Machine Learning, Optimization, and Big Data Machine Learning, Optimization, and Big Data
2016
Learning and Intelligent Optimization Learning and Intelligent Optimization
2013
Machine Learning, Optimization, and Data Science Machine Learning, Optimization, and Data Science
2020