Design of Experiments in Nonlinear Models Design of Experiments in Nonlinear Models
Lecture Notes in Statistics

Design of Experiments in Nonlinear Models

Asymptotic Normality, Optimality Criteria and Small-Sample Properties

    • £87.99
    • £87.99

Publisher Description

Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that will interest students and researchers in the field. Practitionners motivated by applications will find valuable tools to help them designing their experiments. 

The first three chapters expose the connections between the asymptotic properties of estimators in parametric models and experimental design, with more emphasis than usual on some particular aspects like the estimation of a nonlinear function of the model parameters, models with heteroscedastic errors, etc. Classical optimality criteria based on those asymptotic properties are then presented thoroughly in a special chapter. 

Three chapters are dedicated to specific issues raised by nonlinear models. The construction of design criteria derived from non-asymptotic considerations (small-sample situation) is detailed. The connection between design and identifiability/estimability issues is investigated. Several approaches are presented to face the problem caused by the dependence of an optimal design on the value of the parameters to be estimated. 

A survey of algorithmic methods for the construction of optimal designs is provided.

GENRE
Professional & Technical
RELEASED
2013
10 April
LANGUAGE
EN
English
LENGTH
414
Pages
PUBLISHER
Springer New York
SIZE
9.6
MB
Copulae in Mathematical and Quantitative Finance Copulae in Mathematical and Quantitative Finance
2013
Heavy-Tailed Distributions and Robustness in Economics and Finance Heavy-Tailed Distributions and Robustness in Economics and Finance
2015
Risk Assessment and Evaluation of Predictions Risk Assessment and Evaluation of Predictions
2013
Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion
2014
Modeling and Stochastic Learning for Forecasting in High Dimensions Modeling and Stochastic Learning for Forecasting in High Dimensions
2015
Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data
2016