Evolutionary Decision Trees in Large-Scale Data Mining Evolutionary Decision Trees in Large-Scale Data Mining

Evolutionary Decision Trees in Large-Scale Data Mining

    • £87.99
    • £87.99

Publisher Description

This book presents a unified framework, based on specialized evolutionary algorithms, for the global induction of various types of classification and regression trees from data. The resulting univariate or oblique trees are significantly smaller than those produced by standard top-down methods, an aspect that is critical for the interpretation of mined patterns by domain analysts. The approach presented here is extremely flexible and can easily be adapted to specific data mining applications, e.g. cost-sensitive model trees for financial data or multi-test trees for gene expression data. The global induction can be efficiently applied to large-scale data without the need for extraordinary resources. With a simple GPU-based acceleration, datasets composed of millions of instances can be mined in minutes. In the event that the size of the datasets makes the fastest memory computing impossible, the Spark-based implementation on computer clusters, which offers impressive fault tolerance and scalability potential, can be applied.

GENRE
Computing & Internet
RELEASED
2019
5 June
LANGUAGE
EN
English
LENGTH
191
Pages
PUBLISHER
Springer International Publishing
SIZE
5.8
MB
Genetic Programming Genetic Programming
2015
Genetic Programming Genetic Programming
2008
Genetic Programming Genetic Programming
2016
Genetic Programming Genetic Programming
2011
Issues and Challenges in Artificial Intelligence Issues and Challenges in Artificial Intelligence
2011
Genetic Programming Theory and Practice VIII Genetic Programming Theory and Practice VIII
2010