Lectures on the Random Field Ising Model Lectures on the Random Field Ising Model
SpringerBriefs in Physics

Lectures on the Random Field Ising Model

From Parisi-Sourlas Supersymmetry to Dimensional Reduction

    • £31.99
    • £31.99

Publisher Description

This book is about the Random Field Ising Model (RFIM) – a paradigmatic spin model featuring a frozen disordering field. The focus is on the second-order phase transition between the paramagnetic and ferromagnetic phases, and the associated critical exponents.

The book starts by summarizing the current knowledge about the RFIM from experiments, numerical simulations and rigorous mathematical results. It then reviews the classic theoretical works from the 1970’s which suggested a property of dimensional reduction – that the RFIM critical exponents should be the same as for the ordinary, non-disordered, Ising model of lower dimensionality, and related this an emergent Parisi-Sourlas supersymmetry. As is now known, these remarkable properties only hold when the spatial dimensionality of the model is larger than a critical dimension. The book presents a method to estimate the critical dimension, using standard tools such as the replica trick and perturbative renormalization group, whose result is in agreement with the numerical simulations. Some more elementary steps in the derivations are left as exercises for the readers.

This book is of interest to researchers, PhD students and advanced master students specializing in statistical field theory.

GENRE
Science & Nature
RELEASED
2023
7 September
LANGUAGE
EN
English
LENGTH
73
Pages
PUBLISHER
Springer Nature Switzerland
SIZE
3.1
MB
Lectures on Generalized Global Symmetries Lectures on Generalized Global Symmetries
2025
A Superintense Laser-Plasma Interaction Theory Primer A Superintense Laser-Plasma Interaction Theory Primer
2025
Langevin Stochastic Equations: Treatment of Ocean, Planetary Boundary Layer, and Stellar Turbulence Langevin Stochastic Equations: Treatment of Ocean, Planetary Boundary Layer, and Stellar Turbulence
2025
Ferronematics and Living Liquid Crystals Ferronematics and Living Liquid Crystals
2025
An Algebraic Approach to the Many-Electron Problem An Algebraic Approach to the Many-Electron Problem
2025
Introduction to the Theory of Incoherent Scattering of Radar Waves from Plasmas Introduction to the Theory of Incoherent Scattering of Radar Waves from Plasmas
2025