Nonparametric Statistical Methods Using R Nonparametric Statistical Methods Using R
Chapman & Hall/CRC Texts in Statistical Science

Nonparametric Statistical Methods Using R

    • £67.99
    • £67.99

Publisher Description

Praise for the first edition:

“This book would be especially good for the shelf of anyone who already knows nonparametrics, but wants a reference for how to apply those techniques in R.”
-The American Statistician

This thoroughly updated and expanded second edition of Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses. Two new chapters covering multivariate analyses and big data have been added. Core classical nonparametrics chapters on one- and two-sample problems have been expanded to include discussions on ties as well as power and sample size determination. Common machine learning topics --- including k-nearest neighbors and trees --- have also been included in this new edition.

Key Features:
Covers a wide range of models including location, linear regression, ANOVA-type, mixed models for cluster correlated data, nonlinear, and GEE-type. Includes robust methods for linear model analyses, big data, time-to-event analyses, timeseries, and multivariate. Numerous examples illustrate the methods and their computation. R packages are available for computation and datasets. Contains two completely new chapters on big data and multivariate analysis.
The book is suitable for advanced undergraduate and graduate students in statistics and data science, and students of other majors with a solid background in statistical methods including regression and ANOVA. It will also be of use to researchers working with nonparametric and rank-based methods in practice.

GENRE
Science & Nature
RELEASED
2024
20 May
LANGUAGE
EN
English
LENGTH
480
Pages
PUBLISHER
CRC Press
SIZE
9.2
MB
Statistical Rethinking Statistical Rethinking
2020
Introduction to Probability, Second Edition Introduction to Probability, Second Edition
2019
Probability and Statistical Inference Probability and Statistical Inference
2021
Statistics in Survey Sampling Statistics in Survey Sampling
2025
Exercises and Solutions in Probability and Statistics Exercises and Solutions in Probability and Statistics
2025
Stationary Stochastic Processes Stationary Stochastic Processes
2012