Uncertainty Quantification with R Uncertainty Quantification with R
International Series in Operations Research & Management Science

Uncertainty Quantification with R

Bayesian Methods

    • £104.99
    • £104.99

Publisher Description

This book is a rigorous but practical presentation of the Bayesian techniques of uncertainty quantification, with applications in R. This volume includes mathematical arguments at the level necessary to make the presentation rigorous and the assumptions clearly established, while maintaining a focus on practical applications of Bayesian uncertainty quantification methods. Practical aspects of applied probability are also discussed, making the content accessible to students. The introduction of R allows the reader to solve more complex problems involving a more significant number of variables. Users will be able to use examples laid out in the text to solve medium-sized problems.
The list of topics covered in this volume includes basic Bayesian probabilities, entropy, Bayesian estimation and decision, sequential Bayesian estimation, and numerical methods. Blending theoretical rigor and practical applications, this volume will be of interest to professionals, researchers, graduate and undergraduate students interested in the use of Bayesian uncertainty quantification techniques within the framework of operations research and mathematical programming, for applications in management and planning.

GENRE
Business & Personal Finance
RELEASED
2024
6 May
LANGUAGE
EN
English
LENGTH
494
Pages
PUBLISHER
Springer Nature Switzerland
SIZE
110.3
MB
Uncertainty Quantification using R Uncertainty Quantification using R
2023
Uncertainty Quantification and Stochastic Modelling with EXCEL Uncertainty Quantification and Stochastic Modelling with EXCEL
2022
Variational Methods for Engineers with Matlab Variational Methods for Engineers with Matlab
2015
Modeling and Convexity Modeling and Convexity
2013
Linear Programming Linear Programming
2020
Inventory Control Inventory Control
2015
Supply Chain Engineering Supply Chain Engineering
2011
Business Analytics Business Analytics
2012
Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems
2006
Measuring Time Measuring Time
2009