Developing an Impact-Based Combined Drought Index for Monitoring Crop Yield Anomalies in the Upper Blue Nile Basin, Ethiopia Developing an Impact-Based Combined Drought Index for Monitoring Crop Yield Anomalies in the Upper Blue Nile Basin, Ethiopia
IHE Delft PhD Thesis Series

Developing an Impact-Based Combined Drought Index for Monitoring Crop Yield Anomalies in the Upper Blue Nile Basin, Ethiopia

    • 46,99 €
    • 46,99 €

Publisher Description

Having a robust drought monitoring system for Ethiopia is crucial to mitigate the adverse impacts of droughts. Yet, such monitoring system still lacks in Ethiopia, and in the Upper Blue Nile (UBN) basin in particular. Several drought indices exist to monitor drought, however, these indices are unable, individually, to provide concise information on the occurrence of meteorological, agricultural and hydrological droughts. A combined drought index (CDI) using several meteorological, agricultural and hydrological drought indices can indicate the occurrence of all drought types, and can provide information that facilitates the drought management decision-making process. This thesis proposes an impact-based combined drought index (CDI) and a regression prediction model of crop yield anomalies for the UBN basin. The impact-based CDI is defined as a drought index that optimally combines the information embedded in other drought indices for monitoring a certain impact of drought, i.e. crop yield for the UBN. The developed CDI and the regression model have shown to be effective in indicating historic drought events in UBN basin. The impact-based CDI could potentially be used in the future development of drought monitoring in the UBN basin and support decision making in order to mitigate adverse drought impacts.

GENRE
Science & Nature
RELEASED
2018
26 October
LANGUAGE
EN
English
LENGTH
146
Pages
PUBLISHER
CRC Press
SIZE
7.6
MB

Other Books in This Series

Grasping the Water, Energy, and Food Security Nexus in the Local Context Grasping the Water, Energy, and Food Security Nexus in the Local Context
2021
Adaptive Disaster Risk Assessment Adaptive Disaster Risk Assessment
2021
Establishing the Environmental Flow Regime for the Middle Zambezi River Establishing the Environmental Flow Regime for the Middle Zambezi River
2021
Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium
2021
Improved Hydrological Understanding of a Semi-Arid Subtropical Transboundary Basin Using Multiple Techniques - The Incomati River Basin Improved Hydrological Understanding of a Semi-Arid Subtropical Transboundary Basin Using Multiple Techniques - The Incomati River Basin
2019
Integrating Multiple Sources of Information for Improving Hydrological Modelling: an Ensemble Approach Integrating Multiple Sources of Information for Improving Hydrological Modelling: an Ensemble Approach
2019