Analysis of Integrated Data Analysis of Integrated Data
    • USD 67.99

Descripción editorial

The advent of "Big Data" has brought with it a rapid diversification of data sources, requiring analysis that accounts for the fact that these data have often been generated and recorded for different reasons. Data integration involves combining data residing in different sources to enable statistical inference, or to generate new statistical data for purposes that cannot be served by each source on its own. This can yield significant gains for scientific as well as commercial investigations.

However, valid analysis of such data should allow for the additional uncertainty due to entity ambiguity, whenever it is not possible to state with certainty that the integrated source is the target population of interest. Analysis of Integrated Data aims to provide a solid theoretical basis for this statistical analysis in three generic settings of entity ambiguity: statistical analysis of linked datasets that may contain linkage errors; datasets created by a data fusion process, where joint statistical information is simulated using the information in marginal data from non-overlapping sources; and estimation of target population size when target units are either partially or erroneously covered in each source.
Covers a range of topics under an overarching perspective of data integration. Focuses on statistical uncertainty and inference issues arising from entity ambiguity. Features state of the art methods for analysis of integrated data. Identifies the important themes that will define future research and teaching in the statistical analysis of integrated data.
Analysis of Integrated Data is aimed primarily at researchers and methodologists interested in statistical methods for data from multiple sources, with a focus on data analysts in the social sciences, and in the public and private sectors.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2019
18 de abril
IDIOMA
EN
Inglés
EXTENSIÓN
270
Páginas
EDITORIAL
CRC Press
VENDEDOR
Taylor & Francis Group
TAMAÑO
9
MB
Visualization for Social Data Science Visualization for Social Data Science
2025
Introduction to Bayesian Data Analysis for Cognitive Science Introduction to Bayesian Data Analysis for Cognitive Science
2025
Linear Causal Modeling with Structural Equations Linear Causal Modeling with Structural Equations
2009
Understanding Elections through Statistics Understanding Elections through Statistics
2024
Generalized Kernel Equating with Applications in R Generalized Kernel Equating with Applications in R
2024
Principles of Psychological Assessment Principles of Psychological Assessment
2024