Bulk and Boundary Invariants for Complex Topological Insulators Bulk and Boundary Invariants for Complex Topological Insulators
Mathematical Physics Studies

Bulk and Boundary Invariants for Complex Topological Insulators

From K-Theory to Physics

    • USD 79.99
    • USD 79.99

Descripción editorial

This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields.The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to use analysis tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connects the invariants to measurable quantities and thus presents a refined physical characterization of the complex topological insulators. This book is intended for advanced students in mathematical physics and researchers alike.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2016
5 de febrero
IDIOMA
EN
Inglés
EXTENSIÓN
226
Páginas
EDITORIAL
Springer International Publishing
VENDEDOR
Springer Nature B.V.
TAMAÑO
5.5
MB
Geometry, Topology and Operator Algebras Geometry, Topology and Operator Algebras
2025
Symbolic Dynamical Systems and C*-Algebras Symbolic Dynamical Systems and C*-Algebras
2025
Spectral Analysis of N-Body Schrödinger Operators at Two-Cluster Thresholds Spectral Analysis of N-Body Schrödinger Operators at Two-Cluster Thresholds
2024
Korteweg–de Vries Flows with General Initial Conditions Korteweg–de Vries Flows with General Initial Conditions
2024
Some Musings on Theta, Eta, and Zeta Some Musings on Theta, Eta, and Zeta
2023
Many-Body Schrödinger Equation Many-Body Schrödinger Equation
2023