Inequalities: Theory of Majorization and Its Applications Inequalities: Theory of Majorization and Its Applications
Springer Series in Statistics

Inequalities: Theory of Majorization and Its Applications

    • USD 109.99
    • USD 109.99

Descripción editorial

This book’s first edition has been widely cited by researchers in diverse fields. The following are excerpts from reviews. “Inequalities: Theory of Majorization and its Applications” merits strong praise. It is innovative, coherent, well written and, most importantly, a pleasure to read. … This work is a valuable resource!” (Mathematical Reviews). “The authors … present an extremely rich collection of inequalities in a remarkably coherent and unified approach. The book is a major work on inequalities, rich in content and original in organization.” (Siam Review). “The appearance of … Inequalities in 1979 had a great impact on the mathematical sciences. By showing how a single concept unified a staggering amount of material from widely diverse disciplines–probability, geometry, statistics, operations research, etc.–this work was a revelation to those of us who had been trying to make sense of his own corner of this material.” (Linear Algebra and its Applications). This greatly expanded new edition includes recent research on stochastic, multivariate and group majorization, Lorenz order, and applications in physics and chemistry, in economics and political science, in matrix inequalities, and in probability and statistics. The reference list has almost doubled.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2010
25 de noviembre
IDIOMA
EN
Inglés
EXTENSIÓN
936
Páginas
EDITORIAL
Springer New York
VENDEDOR
Springer Nature B.V.
TAMAÑO
25.3
MB
Hidden Markov Processes and Adaptive Filtering Hidden Markov Processes and Adaptive Filtering
2025
Robust Statistics Through the Monitoring Approach Robust Statistics Through the Monitoring Approach
2025
Change Point Analysis for Time Series Change Point Analysis for Time Series
2024
Ten Projects in Applied Statistics Ten Projects in Applied Statistics
2023
Statistical Foundations, Reasoning and Inference Statistical Foundations, Reasoning and Inference
2021
Linear and Generalized Linear Mixed Models and Their Applications Linear and Generalized Linear Mixed Models and Their Applications
2021