Lectures on the Nearest Neighbor Method Lectures on the Nearest Neighbor Method
Springer Series in the Data Sciences

Lectures on the Nearest Neighbor Method

    • USD 119.99
    • USD 119.99

Descripción editorial

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.

Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).   

GÉNERO
Ciencia y naturaleza
PUBLICADO
2015
8 de diciembre
IDIOMA
EN
Inglés
EXTENSIÓN
299
Páginas
EDITORIAL
Springer International Publishing
VENDEDOR
Springer Nature B.V.
TAMAÑO
7.8
MB
Statistical Inference and Machine Learning for Big Data Statistical Inference and Machine Learning for Big Data
2022
Statistics in the Public Interest Statistics in the Public Interest
2022
Multivariate Data Analysis on Matrix Manifolds Multivariate Data Analysis on Matrix Manifolds
2021
Statistics with Julia Statistics with Julia
2021
Data Science for Public Policy Data Science for Public Policy
2021
Mathematical Foundations for Data Analysis Mathematical Foundations for Data Analysis
2021