Machine Learning Machine Learning
    • USD 49.99

Descripción editorial

Machine learning (ML) has become a commonplace element in our everyday lives and a standard tool for many fields of science and engineering. To make optimal use of ML, it is essential to understand its underlying principles. 
This book approaches ML as the computational implementation of the scientific principle. This principle consists of continuously adapting a model of a given data-generating phenomenon by minimizing some form of loss incurred by its predictions. 
The book trains readers to break down various ML applications and methods in terms of data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods.
The book’s three-component approach to ML provides uniform coverage of a wide range of concepts and techniques. As a case in point, techniques for regularization, privacy-preservation as well as explainability amount tospecific design choices for the model, data, and loss of a ML method. 

GÉNERO
Ciencia y naturaleza
PUBLICADO
2022
21 de enero
IDIOMA
EN
Inglés
EXTENSIÓN
229
Páginas
EDITORIAL
Springer Nature Singapore
VENDEDOR
Springer Nature B.V.
TAMAÑO
17.9
MB
Maschinelles Lernen Maschinelles Lernen
2024
Eine Annäherung an Familienunternehmen aus systemtheoretischer Perspektive Eine Annäherung an Familienunternehmen aus systemtheoretischer Perspektive
2012
Verkaufspsychologie in Katalogen Verkaufspsychologie in Katalogen
2012
Topic Modeling Topic Modeling
2025
Derivative-Free Optimization Derivative-Free Optimization
2025
Embodied Multi-Agent Systems Embodied Multi-Agent Systems
2025
Cross-device Federated Recommendation Cross-device Federated Recommendation
2025
Unsupervised Domain Adaptation Unsupervised Domain Adaptation
2024
Robust Machine Learning Robust Machine Learning
2024