Multi-Label Dimensionality Reduction Multi-Label Dimensionality Reduction
Chapman & Hall/CRC Machine Learning & Pattern Recognition

Multi-Label Dimensionality Reduction

Liang Sun y otros
    • USD 69.99
    • USD 69.99

Descripción editorial

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks

GÉNERO
Negocios y finanzas personales
PUBLICADO
2016
19 de abril
IDIOMA
EN
Inglés
EXTENSIÓN
208
Páginas
EDITORIAL
CRC Press
VENDEDOR
Taylor & Francis Group
TAMAÑO
4.6
MB
Data Science and Machine Learning Data Science and Machine Learning
2025
A Concise Introduction to Machine Learning A Concise Introduction to Machine Learning
2025
Multilinear Subspace Learning Multilinear Subspace Learning
2013
Ensemble Methods Ensemble Methods
2025
Machine Learning, Animated Machine Learning, Animated
2023
The Pragmatic Programmer for Machine Learning The Pragmatic Programmer for Machine Learning
2023