Non-equilibrium Dynamics of One-Dimensional Bose Gases Non-equilibrium Dynamics of One-Dimensional Bose Gases

Non-equilibrium Dynamics of One-Dimensional Bose Gases

    • USD 84.99
    • USD 84.99

Descripción editorial

This work presents a series of experiments with ultracold one-dimensional Bose gases, which establish said gases as an ideal model system for exploring a wide range of non-equilibrium phenomena. With the help of newly developed tools, like full distributions functions and phase correlation functions, the book reveals the emergence of thermal-like transient states, the light-cone-like emergence of thermal correlations and the observation of generalized thermodynamic ensembles. This points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution, and lays the groundwork for a universal framework of non-equilibrium physics. The thesis investigates a central question that is highly contested in quantum physics: how and to which extent does an isolated quantum many-body system relax? This question arises in many diverse areas of physics, and many of the open problems appear at vastly different energy, time and length scales, ranging from high-energy physics and cosmology to condensed matter and quantum information. A key challenge in attempting to answer this question is the scarcity of quantum many-body systems that are both well isolated from the environment and accessible for experimental study.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2015
22 de mayo
IDIOMA
EN
Inglés
EXTENSIÓN
161
Páginas
EDITORIAL
Springer International Publishing
VENDEDOR
Springer Nature B.V.
TAMAÑO
4.7
MB