Nonparametric Statistics with Applications to Science and Engineering with R Nonparametric Statistics with Applications to Science and Engineering with R
Wiley Series in Probability and Statistics

Nonparametric Statistics with Applications to Science and Engineering with R

Paul Kvam y otros
    • USD 114.99
    • USD 114.99

Descripción editorial

NONPARAMETRIC STATISTICS WITH APPLICATIONS TO SCIENCE AND ENGINEERING WITH R
Introduction to the methods and techniques of traditional and modern nonparametric statistics, incorporating R code

Nonparametric Statistics with Applications to Science and Engineering with R presents modern nonparametric statistics from a practical point of view, with the newly revised edition including custom R functions implementing nonparametric methods to explain how to compute them and make them more comprehensible.

Relevant built-in functions and packages on CRAN are also provided with a sample code. R codes in the new edition not only enable readers to perform nonparametric analysis easily, but also to visualize and explore data using R’s powerful graphic systems, such as ggplot2 package and R base graphic system.

The new edition includes useful tables at the end of each chapter that help the reader find data sets, files, functions, and packages that are used and relevant to the respective chapter. New examples and exercises that enable readers to gain a deeper insight into nonparametric statistics and increase their comprehension are also included.

Some of the sample topics discussed in Nonparametric Statistics with Applications to Science and Engineering with R include:
Basics of probability, statistics, Bayesian statistics, order statistics, Kolmogorov–Smirnov test statistics, rank tests, and designed experiments Categorical data, estimating distribution functions, density estimation, least squares regression, curve fitting techniques, wavelets, and bootstrap sampling EM algorithms, statistical learning, nonparametric Bayes, WinBUGS, properties of ranks, and Spearman coefficient of rank correlation Chi-square and goodness-of-fit, contingency tables, Fisher exact test, MC Nemar test, Cochran’s test, Mantel–Haenszel test, and Empirical Likelihood
Nonparametric Statistics with Applications to Science and Engineering with R is a highly valuable resource for graduate students in engineering and the physical and mathematical sciences, as well as researchers who need a more comprehensive, but succinct understanding of modern nonparametric statistical methods.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2022
6 de octubre
IDIOMA
EN
Inglés
EXTENSIÓN
448
Páginas
EDITORIAL
Wiley
VENDEDOR
John Wiley & Sons, Inc.
TAMAÑO
272
MB
Applied Time Series Analysis for the Social Sciences Applied Time Series Analysis for the Social Sciences
2025
Statistical Planning and Inference Statistical Planning and Inference
2025
Permutation Tests for Complex Data Permutation Tests for Complex Data
2025
Biostatistical Methods Biostatistical Methods
2014
An Introduction to Cochran-Mantel-Haenszel Testing and Nonparametric ANOVA An Introduction to Cochran-Mantel-Haenszel Testing and Nonparametric ANOVA
2023
Pricing Insurance Risk Pricing Insurance Risk
2022