Robust Latent Feature Learning for Incomplete Big Data Robust Latent Feature Learning for Incomplete Big Data
SpringerBriefs in Computer Science

Robust Latent Feature Learning for Incomplete Big Data

    • USD 39.99
    • USD 39.99

Descripción editorial

Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty.

In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learningusing L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.

GÉNERO
Informática e Internet
PUBLICADO
2022
6 de diciembre
IDIOMA
EN
Inglés
EXTENSIÓN
125
Páginas
EDITORIAL
Springer Nature Singapore
VENDEDOR
Springer Nature B.V.
TAMAÑO
15.3
MB
BiteSize Python for Absolute Beginners BiteSize Python for Absolute Beginners
2025
Data Mining with Python Data Mining with Python
2024
Smart Education Best Practices in Chinese Schools Smart Education Best Practices in Chinese Schools
2023
U.S. Public Diplomacy Towards China U.S. Public Diplomacy Towards China
2022
Affective Encounters Affective Encounters
2020
Mine Waste Management in China: Recent Development Mine Waste Management in China: Recent Development
2019
Introduction to Ethical Software Development Introduction to Ethical Software Development
2025
Digital Image Forgery Detection Digital Image Forgery Detection
2025
Blockchain Without Barriers Blockchain Without Barriers
2025
Human Reconstruction Using mmWave Technology Human Reconstruction Using mmWave Technology
2025
Intelligent Localization for Integrated Sensing and Communication Intelligent Localization for Integrated Sensing and Communication
2025
Secure Communications in Unmanned Aerial Vehicle-Enabled Mobile Edge Computing Systems Secure Communications in Unmanned Aerial Vehicle-Enabled Mobile Edge Computing Systems
2025