Spectral Methods Spectral Methods
Scientific Computation

Spectral Methods

Fundamentals in Single Domains

    • USD 99.99
    • USD 99.99

Descripción editorial

Since the publication of "Spectral Methods in Fluid Dynamics", spectral methods, particularly in their multidomain version, have become firmly established as a mainstream tool for scientific and engineering computation. While retaining the tight integration between the theoretical and practical aspects of spectral methods that was the hallmark of the earlier book, Canuto et al. now incorporate the many improvements in the algorithms and the theory of spectral methods that have been made since 1988. The initial treatment Fundamentals in Single Domains discusses the fundamentals of the approximation of solutions to ordinary and partial differential equations on single domains by expansions in smooth, global basis functions. The first half of the book provides the algorithmic details of orthogonal expansions, transform methods, spectral discretization of differential equations plus their boundary conditions, and solution of the discretized equations by direct and iterative methods. The second half furnishes a comprehensive discussion of the mathematical theory of spectral methods on single domains, including approximation theory, stability and convergence, and illustrative applications of the theory to model boundary-value problems. Both the algorithmic and theoretical discussions cover spectral methods on tensor-product domains, triangles and tetrahedra. All chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is greatly expanded as are the set of numerical examples that illustrate the key properties of the various types of spectral approximations and the solution algorithms.

A companion book "Evolution to Complex Geometries and Applications to Fluid Dynamics" contains an extensive survey of the essential algorithmic and theoretical aspects of spectral methods for complex geometries and provides detailed discussions of spectral algorithms for fluid dynamics in simple and complex geometries. 

GÉNERO
Ciencia y naturaleza
PUBLICADO
2007
23 de septiembre
IDIOMA
EN
Inglés
EXTENSIÓN
603
Páginas
EDITORIAL
Springer Berlin Heidelberg
VENDEDOR
Springer Nature B.V.
TAMAÑO
16.2
MB
Advocacia em Jogo Advocacia em Jogo
2025
Mathematical Analysis I Mathematical Analysis I
2015
Mathematical Analysis II Mathematical Analysis II
2015
Mathematical Analysis II Mathematical Analysis II
2011
Spectral Methods Spectral Methods
2007
Intelligent Analysis of Optical Images Intelligent Analysis of Optical Images
2025
Computer Simulations in Molecular Biology Computer Simulations in Molecular Biology
2023
The Material Point Method The Material Point Method
2023
Advanced Electromagnetic Models for Materials Characterization and Nondestructive Evaluation Advanced Electromagnetic Models for Materials Characterization and Nondestructive Evaluation
2021
Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members
2020
Molecular Dynamics Simulations in Statistical Physics: Theory and Applications Molecular Dynamics Simulations in Statistical Physics: Theory and Applications
2020