Stochastic Distribution Control System Design Stochastic Distribution Control System Design
Advances in Industrial Control

Stochastic Distribution Control System Design

A Convex Optimization Approach

    • USD 159.99
    • USD 159.99

Descripción editorial

Stochastic distribution control (SDC) systems are widely seen in practical industrial processes, the aim of the controller design being generation of output probability density functions for non-Gaussian systems. Examples of SDC processes are: particle-size-distribution control in chemical engineering, flame-distribution control in energy generation and combustion engines, steel and film production, papermaking and general quality data distribution control for various industries. SDC is different from well-developed forms of stochastic control like minimum-variance and linear-quadratic-Gaussian control, in which the aim is limited to the design of controllers for the output mean and variances.

An important recent development in SDC-related problems is the establishment of intelligent SDC models and the intensive use of linear-matrix-inequality-based (LMI-based) convex optimization methods. Within this theoretical framework, control parameter determination can be designed and stability and robustness of closed-loop systems can be analyzed. Stochastic Distribution Control System Design describes the new framework of SDC system design and provides a comprehensive description of the modelling of controller design tools and their real-time implementation. The book starts with a review of current research on SDC and moves on to some basic techniques for modelling and controller design of SDC systems. This is followed by a description of controller design for fixed-control-structure SDC systems, PDF control for general input- and output-represented systems, filtering designs, and fault detection and diagnosis (FDD) for SDC systems. Many new LMI techniques being developed for SDC systems are shown to have independent theoretical significance for robust control and FDD problems.

This monograph will be of interest to academic researchers in statistical, robust and process control, and FDD, process and quality control engineers working in industry and as a reference for graduate control students.

GÉNERO
Ciencia y naturaleza
PUBLICADO
2010
13 de mayo
IDIOMA
EN
Inglés
EXTENSIÓN
214
Páginas
EDITORIAL
Springer London
VENDEDOR
Springer Nature B.V.
TAMAÑO
9.5
MB
Anti-disturbance Intrusion- and Fault-Tolerant Control of Multi-agent Systems Anti-disturbance Intrusion- and Fault-Tolerant Control of Multi-agent Systems
2025
Water-Stable Metal-Organic Frameworks (WSMOFs) Water-Stable Metal-Organic Frameworks (WSMOFs)
2025
Anti-Disturbance Control for Systems with Multiple Disturbances Anti-Disturbance Control for Systems with Multiple Disturbances
2018
Intelligent Autonomous Control of Spacecraft with Multiple Constraints Intelligent Autonomous Control of Spacecraft with Multiple Constraints
2023
Wireless Mobile Communication and Healthcare Wireless Mobile Communication and Healthcare
2022
Eco-Friendly Corrosion Inhibitors Eco-Friendly Corrosion Inhibitors
2022
Model-Based Control of Mass–Stiffness–Damping Systems Model-Based Control of Mass–Stiffness–Damping Systems
2025
Optimal Iterative Learning Control Optimal Iterative Learning Control
2025
Control Systems Benchmarks Control Systems Benchmarks
2025
Multicopter Flight Control Multicopter Flight Control
2025
Optimization of Electric-Vehicle Charging Optimization of Electric-Vehicle Charging
2024
Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games
2024